Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte.

نویسندگان

  • Megan E Holtz
  • Yingchao Yu
  • Deniz Gunceler
  • Jie Gao
  • Ravishankar Sundararaman
  • Kathleen A Schwarz
  • Tomás A Arias
  • Héctor D Abruña
  • David A Muller
چکیده

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core-shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy.

Solid-state-lithium ion batteries (SS-LIBs) are a promising candidate for next-generation energy storage devices. Novel methods for characterizing electrochemical reactions occurring during battery operation at the nanoscale are highly required for understanding the fundamental working principle and improving the performance of the devices. In this work, we combined Ar ion milling under non-atm...

متن کامل

(7)Li in situ 1D NMR imaging of a lithium ion battery.

The spatial distribution of charge carriers in lithium ion batteries during current flow is of fundamental interest for a detailed understanding of transport properties and the development of strategies for future improvements of the electrolyte-electrode interface behaviour. In this work we explored the potential of (7)Li 1D in situ NMR imaging for the identification of concentration gradients...

متن کامل

Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy.

Scanning ion conductance microscopy imaging of battery electrodes, using the geometry shown in the figure, is a tool for in situ nanoscale mapping of surface topography and local ion current. Images of silicon and tin electrodes show that the combination of topography and ion current provides insight into the local electrochemical phenomena that govern the operation of lithium ion batteries.

متن کامل

In situ SEM study of lithium intercalation in individual V2O5 nanowires.

Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2014